Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6594, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852970

RESUMO

The cell type-specific expression of key transcription factors is central to development and disease. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three conserved Brachyury-controlling notochord enhancers, T3, C, and I, in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, in cis deletion of all three enhancers in mouse abolishes Brachyury/T/Tbxt expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. The three Brachyury-driving notochord enhancers are conserved beyond mammals in the brachyury/tbxtb loci of fishes, dating their origin to the last common ancestor of jawed vertebrates. Our data define the vertebrate enhancers for Brachyury/T/TBXTB notochord expression through an auto-regulatory mechanism that conveys robustness and adaptability as ancient basis for axis development.


Assuntos
Notocorda , Peixe-Zebra , Animais , Humanos , Camundongos , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Notocorda/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
2.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131681

RESUMO

The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.

3.
Microorganisms ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456753

RESUMO

A group of seven bacterial strains producing blue-purple pigmented colonies on R2A agar was isolated from freshwater samples collected in a deglaciated part of James Ross Island and Eagle Island, Antarctica, from 2017-2019. The isolates were psychrophilic, oligotrophic, resistant to chloramphenicol, and exhibited strong hydrolytic activities. To clarify the taxonomic position of these isolates, a polyphasic taxonomic approach was applied based on sequencing of the 16S rRNA, gyrB and lepA genes, whole-genome sequencing, rep-PCR, MALDI-TOF MS, chemotaxonomy analyses and biotyping. Phylogenetic analysis of the 16S rRNA gene sequences revealed that the entire group are representatives of the genus Massilia. The closest relatives of the reference strain P8398T were Massilia atriviolacea, Massilia violaceinigra, Massilia rubra, Massilia mucilaginosa, Massilia aquatica, Massilia frigida, Massilia glaciei and Massilia eurypsychrophila with a pairwise similarity of 98.6-100% in the 16S rRNA. The subsequent gyrB and lepA sequencing results showed the novelty of the analysed group, and the average nucleotide identity and digital DNA-DNA hybridisation values clearly proved that P8398T represents a distinct Massilia species. After all these results, we nominate a new species with the proposed name Massilia antarctica sp. nov. The type strain is P8398T (= CCM 8941T = LMG 32108T).

4.
PLoS Genet ; 12(12): e1006441, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27918583

RESUMO

Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction.


Assuntos
Olho/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Cristalino/crescimento & desenvolvimento , Proteínas de Neoplasias/genética , Fator de Transcrição PAX6/genética , Animais , Sítios de Ligação , Ectoderma/crescimento & desenvolvimento , Ectoderma/patologia , Elementos Facilitadores Genéticos/genética , Olho/metabolismo , Olho/patologia , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/genética , Humanos , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Fator de Transcrição PAX6/metabolismo , Peixe-Zebra/genética
5.
Dev Genes Evol ; 225(2): 121-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25689933

RESUMO

Wnt/ß-catenin signaling plays an essential role in the retinal pigment epithelium (RPE) determination. Since activity of Pax6 (together with Pax2) is also required for the RPE determination, we investigated a possible genetic interaction between Pax6 and Wnt/ß-catenin signaling pathway by analyzing Pax6, ß-catenin, and Pax6/ß-catenin conditional knockout mice. Although Pax6 inactivation alone had no impact on initial specification determined by the expression of Mitf and Otx2, melanin pigmentation was reduced in the RPE. This suggests that along with Mitf and Otx2, Pax6 is required for the full differentiation of RPE. Reporter gene assays in vitro suggest that hypopigmentation is at least in part due to the direct regulation of genes encoding enzymes involved in melanin synthesis by Pax6, Mitf, and ß-catenin. The RPE of a ß-catenin/Pax6 double mutant was differentiated into the neural retina; however, the tissue was thinner than that of the conditional ß-catenin mutant due to reduced proliferation. Together, our data demonstrate that Pax6 is required for the RPE differentiation by regulating pigmentation and accountable for hyperproliferation in the transdifferentiated RPE. In this context, Pax6 appears to function as a pleiotropic regulator, directing development of ocular tissues in concert with the signaling pathway and, at the same time, regulating expression of structural component of the eye, such as shielding pigment.


Assuntos
Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Transdiferenciação Celular , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Proteínas Repressoras/genética , Retina/citologia , Retina/metabolismo , beta Catenina/genética
6.
PLoS One ; 8(10): e78279, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205179

RESUMO

The Wnt/ß-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/ß-catenin signaling during lens fiber cell differentiation. To activate Wnt/ß-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of ß-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/ß-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/ß-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.


Assuntos
Catarata/genética , Diferenciação Celular/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , Animais , Catarata/metabolismo , Ciclo Celular/genética , Cristalinas/genética , Cristalinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Cristalino/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Microftalmia/genética , Microftalmia/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , beta Catenina/metabolismo
7.
PLoS One ; 6(2): e14650, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21304903

RESUMO

Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps) and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved.


Assuntos
Padronização Corporal/genética , Cordados/genética , Sequência Conservada , Evolução Molecular , Redes Reguladoras de Genes , Variação Genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Sequência Conservada/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética/genética , Variação Genética/fisiologia , Proteína Goosecoid/genética , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Oryzias/embriologia , Oryzias/genética , Filogenia , Homologia de Sequência de Aminoácidos , Xenopus laevis/embriologia , Xenopus laevis/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...